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DIFFUSION MODEL OF VIBRATIONAL RELAXATION IN A BINARY MIXTURE OF 

DIATOMIC MOLECULES (QUANTUM OSCILLATORS) 

O. V. Skrebkov UDC 533.601.18 

Chemical activation of a system involving the crossing of an activation barrier was 
treated for the first time by Kramers [i] as a stochastic diffusion process in phase space 
with the use of the formalism of the theory of Brownian motion due to Einstein. In later 
years the diffusion model was applied to various kinetic processes such as condensation [2], 
electronic excitation and ionization [2], the approach to equilibrium of the translational 
degrees of freedom of molecules (TT-relaxation) [3], rotational-translational RTT and RT- 
relaxation [4, 5], vibrational-translational VT-relaxation [6-9] (including dissociation and 
recombination [10-12] and radiative deactivation [13]), vibrational-rotational-translational 
VRT-relaxation and dissociation [14], vibrational WT-relaxation in a one-component gas [15- 
17] (including loss of excited particles in chemical reactions [18]), and vibrational VVV'T- 
relaxation in binary gas mixtures [19-22]. 

In all of these cases the term "diffusion process" refers to one-dimensional [1-3, 5-18, 
20-23] or two-dimensional [4, 14, 19] diffusion in the continuous space of the momenta, angu- 
lar momenta, and (or) the energies (or the corresponding quantum numbers ~) and is described 
by a generalized diffusion equation of the Fokker-Planck type or by a system of such equa- 
tions when there are discrete states [22, 23]. The fundamental condition for the applicabil- 
ity of the diffusion model is that the change AE of a coordinate e (such as the vibrational 
or rotational energy, angular momentum, mass of a condensation nucleus) must be small in an 
elementary event, such as a vibrational or rotational transition, the attachment of a molecule 
to a condensation nucleus, and so on. That is 

As~or n~v (i.i) 

(v is the quantum number and n is its change in an elementary event). On the other hand, 
in relaxation problems the space of the problem (energy or the corresponding quantum number, 
for example) can be approximated as continuous only if the system is classical. For example, 
if e is the energy of an oscillator, then e = kT and the classical diffusion model will be 
applicable if 

As~kP or n~%~kP, (1.2) 

where AE is the change in the vibrational energy due to a collision; n is the change in the 
vibrational quantum number; m v m ~v+1,v is the frequency of the vibrational transition v + 
i ~ v; T is the temperature; k is the Boltzmann constant. 

It is not difficult to see that when there are transitions between highly-excited states, 
the condition (I.i) is significantly less strict than (1.2). When we have transitions be- 
tween low-lying states and multiquantum transitions can be neglected (n = i), the single- 
quantum system of balance equations for the population densities can be written without 

*In the treatment of condensation according to the theory of Zel'dovich (1942; see [2]), the 
process is diffusion in the "space" of the sizes of the nuclei of the condensed phase. 

Chernogolovka. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
6, pp. 28-35, November-December, 1987. Original article submitted November i0, 1985. 

830 0021-8944/87/2806-0830512.50 �9 1988 PlenumPublishing Corporation 



making any further assumptions in the form of finite-difference equations of the diffusion 
type in the discrete energy space [24, 25]. Such equations, which do not require the condi- 
tion (1.2), and which can be used to include approximately the effect of multiquantum transi- 
tions (the quantum diffusion model) have been obtained from the complete (including multi- 
quantum transitions) balance equations for the population densities for electronic excita- 
tion and ionization [26], VT-relaxation [24-25], and VVV'T-relaxation in a system with a 
small admixture of nonequilibrium molecules to a Boltzmann thermostat [27]. In [27] it was 
shown by comparison with the exact multiquantum calculation that the region of applicability 
of the quantum diffusion approximation is wide enough for it to be useful in practice. The 
theory gives a better account of the effect of multiquantum transitions the smaller the 
value of n in comparison with v. 

In the present paper we derive a system of finite-difference equations of the diffusion 
type (the quantum diffusion approximation) from the complete (including multiquantum transi- 
tions) balance equations for the population densities for vibrational WV'T-relaxation in a 
binary gas mixture with arbitrary concentrations of the components. In the limit (1.2) the 
equations obtained here reduce to those of the classical diffusion model [19, 22]. 

i. Kinetic Equation. We consider a gas mixture* of diatomic molecules (quantum oscil- 
lators) of two kinds 1 and 2. The system is initially in a nonequilibrium state with respect 
to the vibrational degrees of freedom. The state of the system at time t* is completely de- 
scribed by two one-particle distribution functions (population densities) Xvl, xv 2 over the 
vibrational states v i (i = i, 2) or by threetwo-particle distribution functions corresponding 
to the three types of collisions (i-i, i-2, 2-2) possible in the system. These three dis- 
tribution functions are denoted by P~l.~ 'p'I,'2' , and 9%,,~, and they are related to xv I and Xv~ 
by the equations 

�9 , , = Z , % q  + E, P,,,o;; (1.3) 
"1 V2 

p ,=x,~x,, i , j = t ,  2, (1.4) 

The kinetic behavior of the system can be described by two methods (to the same degree of 
completeness): either a system of two equations for xv I and Xv 2 (the balance equations of the 
population densities; see [28], for example): 

a~,,~ ~Ci2, ~ 1,2, vi(v~)=O,L -dr = ~ C ~ 1  + = . . . . , .  ( 1 . 5 )  
Vl "2 

P ' , and P ': or by three equations for Pi,"[' "l'r2 '%,'2 

%'"; 
dt 

~,] = 1,2. (1.6) 

Here 

e,j= E {p , ,o~ 

is the collision integral; O"J'wJ is the rate constant of the energy exchange process when 

a molecule of type i makes a transition from state v i to state wi, and a molecule of type j 
makes a transition from state vj to state wj. 

Omitting the indices i and j in the interest of brevity, and using the notation 

~o(t)=x,(O/xL ~, ' - -  ~, (oo), 

%,; (0 = P , , ;  ( t ) / g , , , ,  p~,, ,  ------ p , , , ,  (oo),, 
i (V, y , n, nl) = 0 ~,,,| 0 n~,+~.,, pv,'otVv,v+n "~ p~+n,'o, +m~"o+n,'~ 

we can write (1.6) in the form 

*The gas is sufficiently rarefied such that trinary collisions can be neglected. 
%t is assumed to be larger than the characteristic lifetimes of the nondiagonal elements 
of the density matrix. 
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= C r  r176 n (v, v'; n, m). dt 

The following formulas are used to expand the equations into series of finite 
ences (see [29 ] )  

I (v + n, v' + ra) = ] (v, v') + n A l  (v + t, v') + 

+ mA' !  (v~ v' + t) + T n (n - -  t) ASl (v + 2~ v') + nmAA' !  (v + t~ v' + i) + 

+ W i  m (m - -  t) A'~I (v, v' + 2) + . . .  ; 

I (v - n, v' - m) = I (v, v') - hA/ (v ,  v') - 
t - -  mA ' !  (v, v') + " T  n (n - -  t) A~ I (v, v') + n m A / V l  (v, v') + @ m ( m - -  t) A'Sl (v, v') + . . . , .  

A[(v ,  v') = l (v ,  v') - -  l ( v  - -  1, v'), A ' l ( v ,  v') = l ( v ,  v') - -  l (v ,  v' - -  t),; A S / =  A (AD,: 

( 1 . S )  

differ- 

( 1 . 9 a )  

(1.9b) 

which are valid in the approximations 

8v+l,v '~ '  BY, v - l ,  ~v+n,v ~ ~ v + I , v "  

Applying expansion (l.9a) to the function d~+n.~,+m~---~(v+n, v' +m) in Eq. 

(1.1o) 
( 1 . 8 ) ,  we o b t a i n  

A 1 

do,.,, = A. (v. v', o , (  ~ ) 
dt I P,., A~,,,, + T A2r + 

i + As(v, v') p:.,, (A'r + -~. A':~),.,,+,) + Bn(v, v') p~".,,ASO,+,.,, + 
+ 2B1, (v, v') p.,.,AA~ '(9.+1,r +1 + B~, (v, v' )p.,~,A~ ,s (I).,., +2," 

nw~,,+n, As Z B n  2 ~sm'"+m 
n,m#o --- -2- n,m-/=o n ,m~l  

B1 ~ t T Z ..v',~'+m n m ( d t , , + n  "" - -  " Z r nm~,~_~ , 
n,m~O n ,m~l  

~ Z 2~'""+m 2 2~''"'+m Bs,  : ~- m v,.,+. --~ m q..,_, . 

.,m:/:O m,,m>/1 

(1.11) 

( 1 . 1 2 )  

Applying the expansion 
(I.13), we obtain 

Since n and m can be positive or negative, (1.6), (1.7) can be written in the form 

(p,-,,,,-mQ,-,., n,' .,' +m ~ 
dt . . . . .  P,,,'W,.,+n 1. (1.13) 

n,m~O 

(l.9b) to P~-n,~'-m-~-P(V--n~ v'--m) and Qv-n., =-Q(v-n, v'-m; n, m) in 

at' = - -  A (9~,~,p.,.,A l o  (v, v') + T 
t a' [r (v, r + - -  A' [(I), , , ,D,,, , ,A s ~  (v, v')  -4- T 

+ [m,.o,p,%B11 (v, + 2•A' [m,.~ + [m,.o, pI~ (v, 

The calculation of the kinetic coefficients is a separate dynamical problem, but there is 
actually no need to determine A k and Bks separately, since they can be expressed in terms 
of one another from the condition that the flux vanish in equilibrium 

[ I [ ] i - - A '  t A' A 2 - -  A p~ + -~- A (9~ P~ + - T  (P~ + (P~ + 2AA' (p~ + A '~ (p~ ---- 0. ( 1 . 1 5 )  

Indeed, performing term-by-term "differentiation"* on (1.4), and using (i. ii) and (i. 15) 
and the relations A2/v+s ~---A2/v+t ~ AS[v, AA'/v+I,,,+I ~---AA'/v.,,, we have to order O(ASf): 

(1.14) 

* A(I~gr) = loAgo + goM, -- MoAg. 
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dPv,v '  o 0 
dt " ~-- A [9,~,~,,B n (v, v') AO,,,,, + 9~,,v,B~: (v, v') A'O,+~,,,+~] + ( 1 . 1 6 )  

+ ~" [p~ (v, o')A~+,.,,+~ + p"~,,,,B~,(v, v'):A'@,,,,,]. 

T h e r e f o r e  in  t h e  a p p r o x i m a t i o n s  ( 1 . 1 )  and ( 1 . 1 0 )  and to  second  o r d e r  in  e x p a n s i o n s  o f  t h e  
t y p e  ( 1 . 9 ) ,  t h e  p r o c e s s  o f  v i b r a t i o n a l  r e l a x a t i o n  in  a b i n a r y  m i x t u r e  o f  d i a t o m i c  m o l e c u l e s  
can be d e s c r i b e d  by t h r e e  i n d e p e n d e n t  " d i f f e r e n t i a l "  f i n i t e - d i f f e r e n c e  e q u a t i o n s  o f  t h e  d i f -  
f u s i o n  t y p e  f o r  p%,~, p%,,, p%,~ 

don'*'1 = D~j (vi, vi),. i, ] = i, 2, (1 17) 
d t  

or [ in correspondence with (I. 3) ] by two coupled "integrodifferential" finite-difference equa- 
tions of the diffusion type for xv~ and xv= 

Where, from (1.16) 

 =t,2 (1.18) 
- v I v 2 

Di~ = A [wi ,~11  (v~, v~)A@~,,j + 9~,~jS~= (vi, v~) + 

+ A' o i.i o ij 

CO=0 ~ = 0  

Eqs. ( 1 . 1 8 ) a n d  ( 1 . 1 9 )  f i n a l l y  t a k e  t h e  form 
d%~ 2 

ArO) 0, t, 2, 
j = l  

(1.19) 

(1.20) 

(1.21) 

where 

o o o ,[x~jBl.~(ui, vj)] [ J ( 1 . 2 2 a )  

or 

]( : ): tO) Bx z (v,, vj) x~,j xn  x~i_ z x,~i-z X 
L, v i ~ zOi_ I zO 

L v~ "oi-1 

x Z [B,I~ (vi, vj ) x~ -* U ] "" zo B12(vi, vj--i) x,p v~=0 ,1 ,2 , . . .  
"J L "J 

It is not difficult to see the advantage of the diffusion formulation of the kinetic 
equations for the Xvi (or ~=i): the coupling between the equations for the different compo- 
nents is confined to the coefficients of Xvi (or ~o~ ) and is in the form of an average over 
the entire spectrum. Hence approximate analytical methods of solution developed in the 
single-quantum case Can be applied, as well as the method of trials for numerical solution; 
this is quite significant when the number of equations is large. 

(1.22b) 

2. Equation for the Average Energies in a System of Harmonic Oscillators. Introducing 

the normalization ~x, i-- ?i, we define the average energy E i of the molecules of type i by the 
nl 

relation ~vixoi=?iEi. Multiplying (1.21) by v i and summing over vi, we have, using (1.20) 

dEi ~ jO) ( 2. I ) 

For harmonic oscillators 
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xo E O , i  " (E ~  (oo) e - ~  e-~ -x, Oi--.~o~i/kT); ( 2 . 2 )  = v , ( , )  / ( ,  + = - 

�9 j,vj-ra v i! vj I 
q;i-='vi = (vi - n)l n} (v~ -s m! q ~ "  ( 2 . 3 )  

For times t >> xY v, where ~yV is the characteristic time of single-quantum W-exchange (the 
time required to establish a quasi-Boltzmann distribution in each of the components), 

= iE~"l X~i ? �9 /(  + Ei) ~+~. ( 2 . 4 )  

After summing the right-hand side of (2.1) over v i and vj, we find, with the use of relations 
(2.2) through (2.4) 

[ n(E~ m(E~ d/~i V '~  X ~ t ,  2. ( 2 . 5 )  , .  = E n :) - ' '  , = ~=~ ,~,~>~ ,~,~o ~_i_~o z o ( , + ~  d ~ ( i + ~ )  

These equations describe the relaxation of the average energies in a binary mixture of 
diatomic molecules (harmonic oscillators) of types i and 2. When m, n > i, these equations 
are approximate* [in the same sense as the approximate diffusion equations (1.21) and (1.22)]. 
Single-quantum exchange processes are described by (2.5) exactly, as expected. Indeed, when 
n ffi I, m = 0 (single-quantumYT-exchange) we have 

S 

= + 2 ,  dt j=x 

and when n = m = I (single-quantum VV'-exchange) 

dFq ol . [ E~ t+E~ (I + EOEj_EI(I  + Ej)], 
dt ' = "~q~o (~, Y) ~ + ~ eo 

L]=I, 2, i=p], 
(2.6) 

and these equations agree with the corresponding equations of [28, 31], obtained directly 
from the single-quantum balance equations for the population densities (see also [30]). 

In a system of harmonic oscillators, single-quantum VV-exchange between molecules of 
the same kind do not change the E i [and therefore the terms with i = j are equal to zero in 
(2.6)], and the only possible result in the case when W-exchange is fast in comparison with 
VT-exchange (xy V << xyT) is the establishment of the quasistationary distribution (2.4). In 
the general case of anharmonic oscillators, conservation of the number of vibrational quanta 

in single-quantum W-exchange (~ J~? = 0) implies that %+i/% =c-----eonst , and we then have the 

well-known Treanor distribution x v ffi x0cVexp (-ev/kT). 

3. Classical Limit of the Kinetic Equations. In the framework of the approximation 
(i.i0), Eqs. (1.17) and (1.19) transform in the classical limit (R~v/kT<< l)t to a system of 
three two-dimensional differential equations of the diffusion type: 

0PiJ ----- div/I i~, ~, ]---- t ,  2,, 
0 t  . �9 

j ~  OB O o ,; - o'~ ~o~O o o 
= Pij n "~s kPlj/Pi~) - -  v~.~x2 ~ (Ptj/9i~), ( 3 . 1 )  

j e i j  ^o  ~ t ~  0 0 o , = w e , ~ - ~  (p./p~j) ,,o ~ - -  viP-'2~ ~ (PiffPii). 

Here plj(z,8', t) = ]i(8, t)]j(8', t); Pij~ (e, 8', t) = ]~ (8, oo) ]j (8', oo); ]i(e, t) is the classical distribution func- 
tion of molecules of type i over the vibrational energies e; jij and jij are the components 
of the diffusion flux vector jO in the space of the energies E, e' of the interacting mole- 
cules; the coefficients B~3 s are given by the relations 

(a%)" ~ nm~,,,,+~ q <(As)~> B~{(8, 8 3 - -  2 ~-, . ,+- ~,  .0 = 
n , r a ~ o  2 T O  ~ 

*The corresponding exact equations are obtained in [30]. 
tFor more detail, see [24, 25], where the limiting procedure was carried through for VT-ex- 
c h a n g e .  
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�9 ~o)~=, <AsAs'> 
B~ (e, s') 2 ~ ..v',~'+,... = nmw.~+, t ~ ,  1) = - -  

n,m#o 2~iJ 

(~%,)~ <(A~'f> 
s') 2 ' 

n,m~O 

and are in the form of moments of the transferred energies averaged with respect to the para- 
meters of the collision; xij is the mean time between collisions of a molecule of type i in 
a gas of molecules of type j. 

In the classical limit, Eqs. (1.21) and (1.22) transform into a system of two integro- 
differential equations 

OIi (~, t) = a S ( j~ l  + .~7~, de', i = I,_2, at ~ �9 (3.2) 

which can also be obtained from (3.1) with the help of the relation fi(s, t)= [pit(s, t) de' + 

.l'pi=(e, e', t)ds', i----I, 2, which is the classical analog of (1.3). 

Equations (3.1) and (3.2) were obtained in [19] directly from the Boltzmann kinetic 
equations with the use of the weak interaction condition (As, As'<< s, 8'). 
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QUASISTATIONARY RELAXATION AND GAS-DYNAMIC PHENOMENA IN A ONE-COMPONENT 

SYSTEM OF EXCITED ANHARMONIC OSCILLATORS 

V. P. Silakov and A. V. Chebotarev UDC 531 

At the present time the kinetic theory of vibrational relaxation of molecular gases is 
the most developed branch of physical kinetics. Among important achievements in this field 
one has to include the development of general methods of description of systems far from 
equilibrium [i, 2]. In such cases the anharmonicity of the molecular vibration shows a sub- 
stantial influence on the behavior of the medium. Until now theoretical analysis of vibra- 
tional relaxation of systems of anharmonic oscillators was carried out basically for gases 
at rest. 

In addition, due to advances in the physics of nonequilibrium discharge phenomena it 
became clear that the correct description of the behavior of strongly excited gases should 
take into account their relaxational motion. Indeed, as an example, such motion can markedly 
influence the conditions of vibrational relaxation of gases after the discharge [3], and in 
fast-flow discharge arrangements it can lead to the breakdown of the pumping regime of the 
vibrational degrees of freedom of the gaseous mixtures [4]. For a theoretical consideration 
of a selected class of problems one has to complete a substantial amount of computational 
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